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ABSTRACT: This review explores position-dependent mass (PDM) oscillators, natu-
rally occurring in biological systems and relevant to engineered quantum devices. In nature,
PDM oscillations appear in the bending of plant stems, fish swimming, bird flight, and the
motion of limbs, as well as in the oscillatory behavior of organs like the heart and vocal
cords. These phenomena inspired models of oscillators whose effective mass varies with
position, simulating elastic structures attached to bodies of variable mass. Mathematically,
such systems are captured by Liénard equations with quadratic velocity terms. This review
examines key features — motion type, period, and amplitude — of PDM oscillators, highlight-
ing their versatility for describing spatially varying inertia and dynamic adaptation. Extend-
ing these concepts to quantum systems, spatial variations in carrier mass arise in semicon-
ductor nanostructures like quantum wells, wires, and dots, due to compositional inhomoge-
neities and structural gradients. Position-dependent mass models refine quantum mechanics,
enabling more accurate energy-level and carrier-dynamics predictions. Such models are
central to the design of advanced electronic and photonic devices, including quantum cascade
lasers, high electron mobility transistors, and scanning tunneling microscopy. Bridging
biology and quantum engineering, PDM oscillators offer a robust framework for innovation
in adaptive materials and biologically inspired technologies. Future research should address
nonlinear effects, anisotropic materials, and leverage data-driven optimization to fully real-
ize the technological potential of PDM oscillators.

KEYWORDS: Position-dependent mass, nature inspired models, nonlinear oscillators,
quantum systems

INTRODUCTION

Recent advances in nanotechnology and semiconductor physics have in-
creasingly highlighted the significance of position-dependent mass (PDM) in
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quantum systems. In particular, charge carriers in engineered nanostructures,
such as quantum wells, wires, and dots, often experience spatially varying
effective masses due to materlal heterogenelty, strain, and compositional gra-
dients. Traditional quantum mechanical models must therefore be refined to
account for these variations, leading to the development of PDM frameworks.
Remarkably, the principles of PDM are not confined to the realm of quantum
physics. A significant number of PDM oscillatory systems are evident in the
natural world, from the bending of tree branches in the wind to the undula-
tory locomotion of fish and the dynamic shape changes in insect wings. These
biological systems adapt their mass distribution to optimize movement and
resilience, offering compelling analogies for both mechanical and quantum
PDM oscillators.

This paper aims to bridge these natural inspirations and their theoretical
interpretations in quantum systems. The authors first explore the occurrence
of PDM oscillators in living systems, highlighting how nature leverages spatial
mass variation for enhanced function. Afterwards, a comprehensive theoreti-
cal framework for PDM models is developed, inspired by these biological
phenomena. Finally, the authors discuss the mechanical-quantum analogy and
the applications of PDM models in advanced materials and devices.

The remainder of this paper is organized as follows: section 2 examines
nature-inspired PDM oscillators across plant and animal systems, section 3
details the theoretical framework of PDM models, including their mathematical
formulations and physical interpretations, section 4 focuses on the mechanical
analogy and the cross-disciplinary relevance of PDM oscillators and quantum
applications, section 5 concludes with key insights and future directions.

POSITION-DEPENDENT MASS OSCILLATORS IN NATURE
AND APPLICATIOS

A significant number of position-dependent mass (PDM) oscillatory sys-
tems are evident in nature, both in the plant and animal world. During motion,
there is a change in the distribution of mass and the moment of inertia within
the body as a consequence of position changes. These changes may be of
structural kind or arise from variations within the material itself. For instance,
in botany, tree or plant oscillation in the wind is a classic example of such
systems. Wind induces periodic bending of tree branches or stems. As water
content and internal pressure vary along the length, the effective mass and
inertia change with position (Niklas, 1992; Vogel, 2012). Large plant leaves
and flower stalks, such as those in banana plants or sunflowers, exhibit PDM
behavior under wind loading, where the structural response and effective mass
vary with position (Spatz & Speck, 2002).

Locomotion in living beings is also frequently accompanied by changes
in the effective mass of the body. In undulatory swimmers such as eels and
lampreys, the body mass distribution changes dynamically along the spine due
to fluid-structure interactions and muscle activation patterns (Tytell et al.,
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2010). These organisms exhibit traveling wave oscillations with position-de-
pendent inertia and damping, leading to highly efficient propulsion strategies
in aquatic environments. Snakes also exhibit periodic body deformation during
locomotion, changing their mass distribution and moment of inertia with each
undulatory wave (Jayne, 1986).

Additional examples of PDM oscillators can be found in the flexible tail
beats of swimming fish, such as tuna and sharks (Shadwick & Gemballa, 2005),
and the morphing wings of birds like swifts, which dynamically adjust wing
shape to control glide performance (Lentink et al., 2007).

Insects, including flies, bees, and moths, rely on wing flapping for flight.
During flapping, the wings dynamically change their shape — an active defor-
mation process — altering the mass distribution in each stroke (Combes &
Daniel, 2003). The flexible wing structure modifies its effective mass and
stiffness throughout the cycle, enabling agile and controlled flight maneuvers.

Furthermore, insect antennae, such as those of stick insects and moths,
act as elastic oscillators with position-dependent effective mass due to hemo-
lymph redistribution and dynamic shape changes (Diirr & Ebeling, 2005).

Propulsion mechanisms in aquatic organisms further exemplify PDM
oscillators. Jellyfish contract and expand their bell to swim. Contraction expels
water, reducing internal mass, and subsequent refilling restores it, resulting in
a fluid-mass cycle that changes the inertia of the system (Gemmell et al., 2015).
Similarly, octopuses and squids employ jet propulsion: they fill a caV1ty with
water, increasing internal mass, and then eject it to generate thrust. Here, the
system mass varies with internal volume, and the cavity shape directly affects
the total system mass (Anderson & Grosenbaugh, 2005).

Particularly interesting is the occurrence of PDM oscillators within the
human body. Heart valves and chambers act as oscillators with position-de-
pendent mass during the cardiac cycle. Blood redistribution leads to changes
in the effective mass of moving walls with each heartbeat (Chung & Im, 2012).
As the heart fills and empties, its stiffness and effective mass vary, influencing
overall hemodynamics. In voice production, the vocal folds oscillate dynami-
cally. During phonation, their mass distribution changes with shape and tension,
functioning as nonlinear oscillators with effective mass varying along the
vocal fold length (Titze, 2008; Cveti¢anin, 2012). This complexity contributes
to the richness and variability of human voice production.

Finally, these principles are also evident in limb movements. During walk-
ing or running, human and animal limbs exhibit periodic motion, with changes
in mass distribution and effective moment of inertia driven by muscle contrac-
tion, fluid shifts, and joint angles (Winter, 2009). These variations are essential
for understanding the biomechanics of locomotion and for improving perfor-
mance and rehabilitation strategies.

What is common to all these examples is that they represent oscillators
in which mass and/or moment of inertia change depending on position. Con-
sequently, to achieve the most accurate simulation of such systems, it is es-
sential to develop precise models incorporating position-dependent mass
(PDM). Such models should consider as many relevant factors as possible,
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including material heterogeneity, structural geometry, and fluid interactions.

Beyond mimicking natural systems, PDM models hold potential for diverse
engineering and medical applications. They can support the development of
medical devices for organ treatment, aid in the creation of artificial organs,

and contribute to the production of artificial voices. Further research in this
field can advance both our understanding of biological systems and the design
of innovative bioinspired technologies.

MODEL OF POSITION-DEPENDENT MASS OSCILLATOR

Let us model the oscillator as a spring — particle system. The particle has
the position dependent mass (PDM) m(x), which depends on the displacement
coordinate x. Including the specificity of structure and material properties of
the system, the function m(x) may describe any of aforementioned cases. For
particle with PDM the kinetic energy is

E,=5 m(x)%’ (1)

where X. is the velocity. Thus, kinetic energy of PDM particle is not only the
function of the velocity as is the case for particle with constant mass, but also
of the displacement. Properties of the kinetic energy (1) are discussed in paper
of Mustafa (2012) and Chargui (2019).

For the elastic spring with potential /(x) the Lagrangian L of the oscillator
is (Tkachuk & Voznyak, 2015; Mustafa & Algadhi, 2019; Mustafa, 2020; Biswas,
2020)

L=—-m(x)x’- V(x) @
Using the Lagrange formalism jt g—L—g—izo the equation of motion fol-

lows as

m(x) o a0 )

1 dm(x) (dx) AYE) dV(x)

Expression (3) is a special type of Liénard equation (Liénard, 1928; Jordan
& Smith, 2007) with quadratic damping (Ruby et al., 2015; Rath et al., 2017).
The effect of quadratic damping on the oscillatory motion was discussed for
a long time (Tiwari et al., 2013). Verhulst (1996) gave the general treatment of
quadratic damping and suggested the consideration of the Liénard equation
within the framework of dynamical system. In the papers of Narayanan &
Sekar (1996) and Bishop & Clifford (1996) not only the unforced but also the
forced periodical oscillators are considered. The focus is on periodic response
and stability of such systems. It is shown how quadratic damping alters re-
sponse amplitudes and frequency behavior. Zhou & Zhang (2007) extended
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the research considering chaos in the Liénard system. Bifurcation structures
and the route to chaos in these systems is discussed.

For (1), significant number of analytic solving procedures are developed.
Let us mention some of them: the multiple scale method (Nayfeh & Mook, 1979),
perturbation techniques (Chatterjee & Mallik, 1994), harmonic balance meth-
od (Bishop & Clifford, 1996). Main disadvantage of the mentioned procedures
is that they are based on the harmonic solution of the linear oscillator, in spite
of the fact that the system is nonlinear. In Cveti¢anin et al. (2025), modification
of methods is done and the solution is assumed to be the perturbed version of
the exact solution of the truly nonlinear oscillator. The procedure is suggested
for various mass functions.

Harmonic like PDM oscillator

According to the formulation of the potential energy of the linear spring in
the system with constant mass V=kZ where the stiffness coefficient & is defined
as the product of the natural frequency w” of the oscillatory system and mass,
the potential energy of the PDM oscillator is (Rath et al., 2021)

V( .X') — m(x;wzxz (4)

Substituting (4) into (3) the equation of motion is

- 2 dmx) 1 (¥, o'X —
X+wx+ I m(x)(2+ 2) 0 )

As the first two terms in equation correspond to harmonic oscillator and
the last two represent the perturbation of the oscillator with constant mass, the
equation (5) is named ‘harmonic like PDM oscillator’ (Carinena et al., 2004; Asad
et al., 2020, Takou et al., 2025a). Various mass variations are considered (Dong
et al., 2007; Costa-Filho, 2011; Dong et al., 2022) and their effect on motion is
analyzed. Ghosh and Modak (2009) discussed the role of PDM-symmetry on
trajectory of motion and Khlevniuk (2018) established a geometric interpreta-
tion of the motion of a classical particle with PDM in a harmonic potential. Rath
etal. (2021) and Jafarov & Nagiyev (2023) extended the research by formulating
oscillators with position-dependent finite symmetric decreasing and increasing
mass. Classical phase portraits of the systems were analyzed using analytical
approaches. Takou et al. (2025b) introduced a thermodynamic analysis of a
harmonic oscillator with position-dependent mass and explored also the sta-
tistical properties and thermodynamic quantities of the system.

Mathews and Lakshmanan (1974) considered the so called ‘Mathews-Laksh-
mann oscillator’ with PDM of Lorentzian profile type (Mathews & Laksh-
manan, 1975). This equation has the exact analytic solution in the form of the
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cosine trigonometric function (Lakshmanan & Chandrasekar, 2013; Karthiga
et al., 2017; Santos & Gonzalez-Borrero, 2023).

Truly nonlinear like PDM oscillator

In general, let us assume the spring to have nonlinear elastic property.
The potential energy for the spring is (Cveticanin, 2018)

V(o) = M@l ©)

a+1

where a > 1 A a U R (integer or noninteger) is the nonlinearity order of the
oscillator and w7 is a constant. Substituting ( ) into ( ) ne znam Sta treba da
bude u zagradama (Lj.Tubi¢) the equation of motion is

ot ixll g dme) 1 (X el
X+w, x|x[ + Ix m(x)(z"'wa a+1)—0 Q)

Comparing (7) with the oscillator with constant mass

@®

X+ xx] =

the difference is evident. The additional terms in (7) are the products of
PDM function and its position derivative. As the equation (7) represents the
perturbation of (8), i.e. of the truly nonlinear oscillator (Mickens, 2010), the
equation (7) is usually called ‘truly nonlinear like PDM oscillator’.
Analyzing (7) it is obtained that it has the first integral

m(x)( +a "fc'fll) K = const. ©)

The first integral (9) is of energy type where both energies (kinetic and
potential) are mass dependent. For initial conditions

x(0)=4, x0)=0 (10)

where 4 = const. the constant is K= m(A)::—j1 and the energy integral is

2 x|x| A™
m(x)( +w, (x+1) m(A)m (11)
Le.
- m(A) Aa+1 2 |x|a+l
x—i\/Z( mx) arl Y m) (12)
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Expression (11) i.e. (12) describes the orbital periodic motion with ampli-
tude 4. Using (12) the period of vibration is

T= 2(oc+1)+l 4 dx
il 1T el
m(x) “®at+l ATm(A) (13)

Unfortunately, the exact analytic solution of (13) is not evident. Because
of that the method for calculation of the approximate period of vibration is
introduced.

Modified He’s formulation

He, in his paper (He, 2006), introduced the formula for computing of the
approximate frequency of vibration of the perturbed linear oscillator

2_ w;R(0)-w;R (0)
“ T TROR0) (9
where @ is the exact frequency of the nonperturbed linear oscillator, w, = @ is
unknown frequency, and R;(0) and R,(0) are residuals obtained for the linear
solution Acos(mt) and corresponding frequencies.

For the truly nonlinear oscillator (8) and initial conditions (10) there is the
exact solution x = Aca(a, 1, wf) in the form of the ca cosine Ateb function
(Cveticanin, 2025) with exact frequency

w'=w A‘H"‘z_+1 (15)

Substituting (15) into (14) and after some modification the approximate
frequency of the ca Ateb function follows as

\/ Aaloc+1 ¢ dm 1) (16)

"‘2 dx m’0

. .. .. . . 1 1
Knowing that the Ateb function is periodic with period B(m, 5) where
B is the complete beta function, the period of vibration is

T= 2B(a+1’2) 2B((x+1’2) 1
w \/ N l(x+1\/1 A_dml, (17)
a+l dxm

In (17) the first term corresponds to the period of the truly nonlinear oscil-
lator with constant mass, and the second is the correction term which depends
on the PDM function and its position derivative. Analyzing the relation (17) it
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is obvious that the period is longer for decreasing PDM than for the oscillator
with constant mass. In opposite, if mass is increasing the period is decreasing
in comparison to the oscillator with constant mass. The higher is the mass
increase, the period is shorter.

THEORETICAL FRAMEWORK AND APPLICATIONS OF PDM
IN QUANTUM SYSTEMS

This section reviews the theoretical framework and practical implications
of PDM models in quantum systems, particularly in the modeling of quantum
oscillators. It highlights how the PDM formalism modifies standard quantum
models, enabling more accurate descriptions of carrier behavior in heterostruc-
tures, quantum wells, and quantum wires. The theoretical foundations of PDM
are examined, along with its significance in capturing the spatial variations of
effective mass and its relevance in multiple application domains.

In engineered nanostructures such as heterostructures, quantum wells,
and quantum wires, the spatial nonuniformity of material parameters neces-
sitates refined theoretical models to enable accurate simulation and device
optimization (Capasso et al., 1995; Zawadzki, 2005). The PDM approach thus
represents an essential tool for describing quantum mechanical systems where
the effective mass of charge carriers varies spatially (Roos, 1983; Bastard,
1988). Namely, recent advances in nanotechnology and semiconductor physics
have increasingly emphasized the importance of spatially varying material
parameters, especially the effective mass of charge carriers in semiconductor
nanostructures. The PDM framework emerges as a crucial refinement to standard
quantum models, accounting for the inhomogeneities encountered in real-world
systems (Dekar et al., 1999; Plastino et al., 1999).

Furthermore, the analogy between mechanical and quantum PDM oscil-
lators has been demonstrated (Carinena et al., 2007; Schulze-Halberg & Roy,
2016). The use of PDM models is widespread in quantum dynamics studies of
low-dimensional systems (Costa Filho et al., 2011; El-Nabulsi, 2021a), particu-
larly in the coherent state framework, where a specific quantum state closely
approximates classical behavior. This is especially significant in the context
of quantum dots, quantum wells, and other semiconductor nanostructures (Cruz
& Ortiz, 2009; Costa et al., 2023).

PDM model and applications

In nanostructures such as quantum dots, quantum wells, and superlat-
tices, the effective mass of carriers (electrons and holes) is not constant but
varies with position. The PDM model captures this spatial variation, providing
improved accuracy in describing energy states and carrier dynamics. Coherent
states in these structures often serve to describe the quasi-classical behavior
of confined carriers (e.g., in laser-based nanostructures and quantum emitters).
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Key application areas include:

» Semiconductor quantum dots: Electrons are confined in all three spatial
directions, with PDM models accurately describing energy levels and wave
functions (Ghosh et al., 2016; ElI-Nabulsi, 2020a; 2020b; Sari et al., 2022).

* Quantum wells: Electrons can move freely in the plane of the well but are
confined in one dimension, forming discrete, quantized energy levels
(Harrison, 2005; Dekar et al., 1999).

* Superlattices and nanoscale layers: These structures exhibit engineered
potential profiles relevant to nonlinear optics and coherent emission prop-
erties (Chen, 2008).

A heterostructure consists of multiple layers of dissimilar semiconductor
materials, each with distinct electronic band structures (El-Nabulsi, 2021a;
2021b; Costa et al., 2021). These structures are typically fabricated using epi-
taxial growth techniques such as molecular beam epitaxy (MBE) or metal-
organic chemical vapor deposition (MOCVD), allowing atomic-level control
of layer thickness and composition (Chen, 2008).

Quantum wells arise when a thin semiconductor layer with a lower bandgap
is confined between layers of higher bandgap material (Harrison, 2005). This
structure creates a potential well that confines carriers in one spatial dimension,
leading to discrete energy levels (Dekar et al., 1999). Quantum wires extend this
confinement to two dimensions, allowing motion only along a single axis and
are typically fabricated using electron-beam lithography and anisotropic etch-
ing (Chen, 2008). While idealized models assume a constant effective mass,
real-world systems exhibit spatial variations due to changes in alloy composi-
tion, band structure, and quantum confinement effects (Roos, 1983; Bastard,
1988; Zawadzki, 2005). Accurate modelling thus requires incorporating PDM
effects to account for variations in energy spectra, carrier mobility, and tunneling
rates (Serra & Lipparini, 1997; Kog¢ & Koca, 2003).

Quantum Oscillators with Position-Dependent Mass

The PDM oscillator approach is essential for simulating devices where
material inhomogeneity strongly affects carrier motion (Serra & Lipparini,
1997; Mottaghizadeh & Sadeghi, 2020). These oscillators extend classical
harmonic and inharmonic oscillator models by incorporating mass variation,
leading to modified energy levels and wavefunction profiles (Dutra & Almeida,
2000; Bagchi et al., 2005; Bagchi et al., 2012; Costa et al., 2023; Takou et al.,
2025b). These models are particularly relevant in:

* Quantum wells and dots with smooth interfaces (Harrison, 2005; Sayrac

et al., 2025).

» Semiconductor devices with spatially graded composition or doping (Bas-

tard, 1988).

» Superlattices and nanostructures with engineered potential landscapes

(Christiansen & Lima, 2023; Lima & Christiansen, 2023).
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For instance, high-electron-mobility transistors (HEMTs), utilized in high-
frequency RF and satellite circuits, involve heterostructures such as GaAs/
AlGaAs where PDM arises at interfaces between materials with different band-
gaps (Roos 1983; Capasso et al., 1995; Peter, 2020). In scanning tunneling
microscopy (STM) systems, the tip interacts with layered quantum materials
where electronic properties—and effective mass—vary spatially, influencing
tunneling probability and imaging resolution (Chen, 2008; Jaradat et al., 2024a;
2024b). Resonant tunneling diodes (RTDs) utilize double-barrier quantum
wells, where varying effective mass influences tunneling rates and energy
levels (Bagchi et al., 2005; Bagchi et al., 2012). Quantum cascade lasers (QCLs),
employed in spectroscopy, gas sensing, and medical diagnostics, consist of
repeated quantum wells with alternating materials, resulting in PDM across
the layers (Capasso et al., 1995; Callebaut & Hu, 2005). Graded-index wave-
guides, quantum dot LEDs, and solar cells similarly exhibit PDM effects due
to compositionally graded materials (Bastard, 1988; Mottaghizadeh & Sadeghi,
2020; Ullah & Ullah, 2020; Sayrac et al., 2025).

The PDM effects also manifest in strongly inhomogeneous plasmas, where
spatially varying electric and magnetic fields modulate effective mass, impact-
ing Langmuir wave propagation and particle trapping (Christiansen & Lima,
2023; El-Nabulsi & Anukool, 2022). These systems often display nonuniform
energy spacing, asymmetric tunneling, and position-sensitive resonance phe-
nomena, underscoring the importance of PDM oscillator models in understand-
ing such effects (Quesne, 2023).

CONCLUSION

This review has provided a thorough overview of position-dependent mass
(PDM) models and their theoretical frameworks, highlighting their essential
role in understanding natural and engineered oscillatory systems. From undu-
latory swimmers and flexible plant structures to insect flight mechanisms,
PDM models accurately capture dynamic mass variations crucial to locomotion,
fluid—structure interactions, and adaptive responses in biological systems.

In engineering and quantum domains, PDM models have proven vital for
the design and optimization of advanced electronic, photonic, and nano-scale
devices—including quantum cascade lasers, high-electron-mobility transistors,
and scanning tunneling microscopy. Their ability to integrate mass variation
and motion dynamics makes them indispensable in both fundamental and ap-
plied research.

The broad relevance of PDM models in biology, engineering, and quantum
systems underscores their versatility in capturing the complex dynamical be-
havior of oscillators with position-dependent inertia. This unified framework holds
promise for guiding the development of biomimetic devices, soft robotics, and
adaptive materials inspired by natural strategies for movement and stability.
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Future research should aim to refine these models to incorporate nonlin-
ear effects, anisotropic material behavior, and complex damping mechanisms
while validating their predictions experimentally in both natural and engi-
neered systems. Integrating PDM-based models into next-generation quantum
devices, photonic systems, and plasma-based technologies offers substantial
opportunities for innovation and performance enhancement. Ultimately, PDM-
inspired oscillators bridge the gap between natural insights and engineering
solutions, paving the way for transformative applications across diverse scien-
tific and technological fields.

OUTLOOK AND FUTURE WORK

The advancement of accurate PDM models for living systems demands
interdisciplinary collaboration among biomechanics, physiology, fluid dynamics,
and computational modeling. Future research should prioritize the refinement
of mathematical formulations for PDM systems—particularly in the context of
complex biological tissues and fluid—structure interactions—supported by high-
fidelity experimental data from time-resolved MRI, high-speed imaging, and
other advanced techniques.

Furthermore, leveraging machine learning and optimization algorithms
will be instrumental in identifying key parameters that govern PDM system
behavior, facilitating more robust and precise control strategies in real-world
applications. Integrating these data-driven approaches with theoretical models
promises to accelerate the development of predictive and adaptive PDM frame-
works.

Looking ahead, the combination of theory, experimentation, and compu-
tational simulation will be crucial to unlocking new insights into these complex
yet elegant natural phenomena. Such efforts will not only enhance our under-
standing of biological and quantum systems but also inspire the next generation
of bioinspired, energy-efficient, and adaptable engineered devices that fully
exploit the rich dynamical properties of PDM-based oscillators.
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PE3VME: [Ipernen uctpaxyje KOHIENT OCIHJIATOPA Ca MAaCOM 3aBHUCHOM O/
noniokaja (M3I1) mpemo3Hat Ko MpUPOTHIX CUCTEMA a KOjH je TPUMEHJFUB KOJT KBaHT-
HUX ypehaja. bronomkn ociumaTopHu CHCTEMH NOKa3yjy JHHAMHYKO MpriarohaBame
pacriozienie Mace KpeTamwy | mojoxajy. [[poMeHa eeKTHBHE Mace 1 MOMEHTa HHEPLHje
JieTiaBa ce KO/ caBHjama CTa0JbHKe OMIbKE, KO BHjyTama Tejla pude NMpH MIINBAmY,
KOJIl KpWJIa MIPH JICTCHY NTHIlA aJld U MHCEKATa, KOJ Y0Ba YOBEKA U KUBOTHHA MPH
KOopavamy M Tpuamy. Paj HU3a yHYTpalllbUX OpraHa y Tejly 4oBeka oMoryheH je u
nponpaheH ocumIaTOpHUM KpeTameM y3 IPOMeHy Mace (paja cpuaHor mumuha, Tpere-
peme riacHe xxuie). Macnupucany 0BUM NPUPOAHUM (PEHOMEHHMA CAUYHE-EHU Cy MOJICITH
ocIuIIaTopa ca e)eKTUBHOM MacoOM KOja je TPOMEHJbHBA, U (DYHKIIH]ja nosoxkaja. Duzny-
KM MOJIEJ OCIIMJIATOpa KOjU CUMYJIMpa KpeTama cacToju ce O] eIaCTUYHOT eJIeMEeHTa
3a KOjH je Be3aHO TeJI0 IPOMEHJbUBE Mace. Y OINILITEM CIydajy MaTeMaTH4YKH MOAEI
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cucteMa je JIuenapnosa jeqHaunHa ca KBaIpaTHOM (pyHKIHjoM Op3uHe. Y pany cy IpH-
Ka3aHe Creln(pUIHOCTH OBOT OCIIHIIATOPA KOj€ C€ OTHOCE Ha THI KpeTarma, HEePHO 1
aMILTATYJIe OCLMIIOBarba. OBH MOJENN Hy/Ie CBECTPAH TEOPH]CKH OKBUD 32 PasyMeBarbe
OCLIMJIATOPA Ca POCTOPHO MPOMEHILUBOM HHEPLHMjoM, 00y xBaTajyhu ciokene uHTep-
akuuje uzmelhy CTpyKType U Kperama. Y pajy je, kopuctelin KapakTepUCTHKE MeXa-
HUYKOT MOjIeJia, IOBYUCHa mapajeia n3Mel)y mpupogHuX CHCTeMa U MHIKSEHEPCKIX
kBaHTHUX ypehaja. [Ipernen oOyxsara Teopujcku pazsoj M3I1 moznena, mUXoBe Mexa-
HUYKO-KBAHTHE aHAJIOTH]E U HCHE MPUMEHE. Y KBAHTHUM CUCTEMHMa, HAPOUUTO Y
MOy TPOBOJIHMYKUM HAHOCTPYKTYpaMa Kao IITO Cy KBAHTHE jame, KHUIe U TadykKe,
MIPOCTOPHE BapHjanuje epeKTUBHE Mace HOCUIIAlla HaCIEKTPUCaha IPOUCTHYY U3
KOMIIO3UIIMOHMX HEXOMOT@HOCTH M CTPYKTYpHHX rpaaujeHata. M3I1 moxenu omo-
ryhyjy ycaBpuiaBame TpaJuIIHOHATHOT IPUCTYTIa KBAHTHE MEXaHHKe, T000JpIIaBajyhu
TayHOCT MpeABulama HIBOA €HEeprije U JUHAMUKE HOCHIJIAlla Y OBUM CUCTEMHUMA.
Takole, oBM MOJIeNT YMHE OCHOBY 3a MPOjEKTOBAE U PaJ HATPEIHUX SNEKTPOHCKUX
1 GOTOHCKHUX ypehaja momyT KBaHTHUX KacKaIHKX Jiacepa, TPAaH3UCTOpa Ca BEIMKOM
MMOKPETJbUBOIINY €JIEKTPOHA U CKeHHupajyhe TyHencke Mukpockomnwuje. [loBesyjyhu
MPUPOIHE U HHKCHEPCKE TIEPCIIEKTHBE, OBaj paJl yka3yje Ha BequKkH notexuujan M3I1
OCIIMIIATOpa Kao OKBUpA 3a Bol)erhe MHOBAIH]a Y OHOJIONIKH HHCITHPHCAHUM TEXHOJIOT H-
jama, aJlanTHBHUM MaTepHjajinMa U KBaHTHUM ypehajuma cienehe renepanuje. byayha
HCTpaKuBama Tpeba Ja yKJbydue HennHeapHe edekTe, aHU30TPOITHE MaTepHjaie u
CTpaTeruje ONTHMHU3AIlHje 3aCHOBAaHE Ha MOJIallNMa, KaKo OM ce TOAaTHO YCABPIIHIN
MB3II Moeni ¥ HICKOPUCTHO HBUXOB ITYHU TEXHOJIOMKH MOTEHITH]jaJl.

KJbYYHE PEUU: maca 3aBucHa oz nonoxaja (M3I1); Moaenn mHCIUpHUCaHH MTPHU-
POZIOM; HEJIMHEAPHU OCIMJIATOPH; KBAHTHU CHCTEMHU
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