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MASS OSCILLATOR MODELS APPLIED IN  
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ABSTRACT: This review explores position-dependent mass (PDM) oscillators, natu-
rally occurring in biological systems and relevant to engineered quantum devices. In nature, 
PDM oscillations appear in the bending of plant stems, fish swimming, bird flight, and the 
motion of limbs, as well as in the oscillatory behavior of organs like the heart and vocal 
cords. These phenomena inspired models of oscillators whose effective mass varies with 
position, simulating elastic structures attached to bodies of variable mass. Mathematically, 
such systems are captured by Liénard equations with quadratic velocity terms. This review 
examines key features – motion type, period, and amplitude – of PDM oscillators, highlight-
ing their versatility for describing spatially varying inertia and dynamic adaptation. Extend-
ing these concepts to quantum systems, spatial variations in carrier mass arise in semicon-
ductor nanostructures like quantum wells, wires, and dots, due to compositional inhomoge-
neities and structural gradients. Position-dependent mass models refine quantum mechanics, 
enabling more accurate energy-level and carrier-dynamics predictions. Such models are 
central to the design of advanced electronic and photonic devices, including quantum cascade 
lasers, high electron mobility transistors, and scanning tunneling microscopy. Bridging 
biology and quantum engineering, PDM oscillators offer a robust framework for innovation 
in adaptive materials and biologically inspired technologies. Future research should address 
nonlinear effects, anisotropic materials, and leverage data-driven optimization to fully real-
ize the technological potential of PDM oscillators. 

KEYWORDS: Position-dependent mass, nature inspired models, nonlinear oscillators, 
quantum systems 

INTRODUCTION

Recent advances in nanotechnology and semiconductor physics have in-
creasingly highlighted the significance of position-dependent mass (PDM) in 
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quantum systems. In particular, charge carriers in engineered nanostructures, 
such as quantum wells, wires, and dots, often experience spatially varying 
effective masses due to material heterogeneity, strain, and compositional gra-
dients. Traditional quantum mechanical models must therefore be refined to 
account for these variations, leading to the development of PDM frameworks. 
Remarkably, the principles of PDM are not confined to the realm of quantum 
physics. A significant number of PDM oscillatory systems are evident in the 
natural world, from the bending of tree branches in the wind to the undula-
tory locomotion of fish and the dynamic shape changes in insect wings. These 
biological systems adapt their mass distribution to optimize movement and 
resilience, offering compelling analogies for both mechanical and quantum 
PDM oscillators.

This paper aims to bridge these natural inspirations and their theoretical 
interpretations in quantum systems. The authors first explore the occurrence 
of PDM oscillators in living systems, highlighting how nature leverages spatial 
mass variation for enhanced function. Afterwards, a comprehensive theoreti-
cal framework for PDM models is developed, inspired by these biological 
phenomena. Finally, the authors discuss the mechanical-quantum analogy and 
the applications of PDM models in advanced materials and devices.

The remainder of this paper is organized as follows: section 2 examines 
nature-inspired PDM oscillators across plant and animal systems, section 3 
details the theoretical framework of PDM models, including their mathematical 
formulations and physical interpretations, section 4 focuses on the mechanical 
analogy and the cross-disciplinary relevance of PDM oscillators and quantum 
applications, section 5 concludes with key insights and future directions.

POSITION-DEPENDENT MASS OSCILLATORS IN NATURE  
AND APPLICATIOS

A significant number of position-dependent mass (PDM) oscillatory sys-
tems are evident in nature, both in the plant and animal world. During motion, 
there is a change in the distribution of mass and the moment of inertia within 
the body as a consequence of position changes. These changes may be of 
structural kind or arise from variations within the material itself. For instance, 
in botany, tree or plant oscillation in the wind is a classic example of such 
systems. Wind induces periodic bending of tree branches or stems. As water 
content and internal pressure vary along the length, the effective mass and 
inertia change with position (Niklas, 1992; Vogel, 2012). Large plant leaves 
and flower stalks, such as those in banana plants or sunflowers, exhibit PDM 
behavior under wind loading, where the structural response and effective mass 
vary with position (Spatz & Speck, 2002).

Locomotion in living beings is also frequently accompanied by changes 
in the effective mass of the body. In undulatory swimmers such as eels and 
lampreys, the body mass distribution changes dynamically along the spine due 
to fluid-structure interactions and muscle activation patterns (Tytell et al., 
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2010). These organisms exhibit traveling wave oscillations with position-de-
pendent inertia and damping, leading to highly efficient propulsion strategies 
in aquatic environments. Snakes also exhibit periodic body deformation during 
locomotion, changing their mass distribution and moment of inertia with each 
undulatory wave (Jayne, 1986).

Additional examples of PDM oscillators can be found in the flexible tail 
beats of swimming fish, such as tuna and sharks (Shadwick & Gemballa, 2005), 
and the morphing wings of birds like swifts, which dynamically adjust wing 
shape to control glide performance (Lentink et al., 2007).

Insects, including flies, bees, and moths, rely on wing flapping for flight. 
During flapping, the wings dynamically change their shape – an active defor-
mation process – altering the mass distribution in each stroke (Combes & 
Daniel, 2003). The flexible wing structure modifies its effective mass and 
stiffness throughout the cycle, enabling agile and controlled flight maneuvers.

Furthermore, insect antennae, such as those of stick insects and moths, 
act as elastic oscillators with position-dependent effective mass due to hemo-
lymph redistribution and dynamic shape changes (Dürr & Ebeling, 2005).

Propulsion mechanisms in aquatic organisms further exemplify PDM 
oscillators. Jellyfish contract and expand their bell to swim. Contraction expels 
water, reducing internal mass, and subsequent refilling restores it, resulting in 
a fluid-mass cycle that changes the inertia of the system (Gemmell et al., 2015). 
Similarly, octopuses and squids employ jet propulsion: they fill a cavity with 
water, increasing internal mass, and then eject it to generate thrust. Here, the 
system mass varies with internal volume, and the cavity shape directly affects 
the total system mass (Anderson & Grosenbaugh, 2005).

Particularly interesting is the occurrence of PDM oscillators within the 
human body. Heart valves and chambers act as oscillators with position-de-
pendent mass during the cardiac cycle. Blood redistribution leads to changes 
in the effective mass of moving walls with each heartbeat (Chung & Im, 2012). 
As the heart fills and empties, its stiffness and effective mass vary, influencing 
overall hemodynamics. In voice production, the vocal folds oscillate dynami-
cally. During phonation, their mass distribution changes with shape and tension, 
functioning as nonlinear oscillators with effective mass varying along the 
vocal fold length (Titze, 2008; Cvetićanin, 2012). This complexity contributes 
to the richness and variability of human voice production. 

Finally, these principles are also evident in limb movements. During walk-
ing or running, human and animal limbs exhibit periodic motion, with changes 
in mass distribution and effective moment of inertia driven by muscle contrac-
tion, fluid shifts, and joint angles (Winter, 2009). These variations are essential 
for understanding the biomechanics of locomotion and for improving perfor-
mance and rehabilitation strategies.

What is common to all these examples is that they represent oscillators 
in which mass and/or moment of inertia change depending on position. Con-
sequently, to achieve the most accurate simulation of such systems, it is es-
sential to develop precise models incorporating position-dependent mass 
(PDM). Such models should consider as many relevant factors as possible, 
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including material heterogeneity, structural geometry, and fluid interactions. 
Beyond mimicking natural systems, PDM models hold potential for diverse 
engineering and medical applications. They can support the development of 
medical devices for organ treatment, aid in the creation of artificial organs, 
and contribute to the production of artificial voices. Further research in this 
field can advance both our understanding of biological systems and the design 
of innovative bioinspired technologies.

MODEL OF POSITION-DEPENDENT MASS OSCILLATOR

Let us model the oscillator as a spring – particle system. The particle has 
the position dependent mass (PDM) m(x), which depends on the displacement 
coordinate x. Including the specificity of structure and material properties of 
the system, the function m(x) may describe any of aforementioned cases. For 
particle with PDM the kinetic energy is 

	 	
(1)

where ẋ. is the velocity. Thus, kinetic energy of PDM particle is not only the 
function of the velocity as is the case for particle with constant mass, but also 
of the displacement. Properties of the kinetic energy (1) are discussed in paper 
of Mustafa (2012) and Chargui (2019).

For the elastic spring with potential V(x) the Lagrangian L of the oscillator 
is (Tkachuk & Voznyak, 2015; Mustafa & Algadhi, 2019; Mustafa, 2020; Biswas, 
2020)

	 	
(2)

Using the Lagrange formalism  the equation of motion fol-
lows as

	 	
(3)

Expression (3) is a special type of Liénard equation (Liénard, 1928; Jordan 
& Smith, 2007) with quadratic damping (Ruby et al., 2015; Rath et al., 2017). 
The effect of quadratic damping on the oscillatory motion was discussed for 
a long time (Tiwari et al., 2013). Verhulst (1996) gave the general treatment of 
quadratic damping and suggested the consideration of the Liénard equation 
within the framework of dynamical system. In the papers of Narayanan & 
Sekar (1996) and Bishop & Clifford (1996) not only the unforced but also the 
forced periodical oscillators are considered. The focus is on periodic response 
and stability of such systems. It is shown how quadratic damping alters re-
sponse amplitudes and frequency behavior. Zhou & Zhang (2007) extended 
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the research considering chaos in the Liénard system. Bifurcation structures 
and the route to chaos in these systems is discussed. 

For (1), significant number of analytic solving procedures are developed. 
Let us mention some of them: the multiple scale method (Nayfeh & Mook, 1979), 
perturbation techniques (Chatterjee & Mallik, 1994), harmonic balance meth-
od (Bishop & Clifford, 1996). Main disadvantage of the mentioned procedures 
is that they are based on the harmonic solution of the linear oscillator, in spite 
of the fact that the system is nonlinear. In Cvetićanin et al. (2025), modification 
of methods is done and the solution is assumed to be the perturbed version of 
the exact solution of the truly nonlinear oscillator. The procedure is suggested 
for various mass functions.

Harmonic like PDM oscillator

According to the formulation of the potential energy of the linear spring in 
the system with constant mass  where the stiffness coefficient k is defined 
as the product of the natural frequency ω2 of the oscillatory system and mass, 
the potential energy of the PDM oscillator is (Rath et al., 2021)

	 	
(4)

Substituting (4) into (3) the equation of motion is 

	 	
(5)

As the first two terms in equation correspond to harmonic oscillator and 
the last two represent the perturbation of the oscillator with constant mass, the 
equation (5) is named ‘harmonic like PDM oscillator’ (Carinena et al., 2004; Asad 
et al., 2020, Takou et al., 2025a). Various mass variations are considered (Dong 
et al., 2007; Costa-Filho, 2011; Dong et al., 2022) and their effect on motion is 
analyzed. Ghosh and Modak (2009) discussed the role of PDM-symmetry on 
trajectory of motion and Khlevniuk (2018) established a geometric interpreta-
tion of the motion of a classical particle with PDM in a harmonic potential. Rath 
et al. (2021) and Jafarov & Nagiyev (2023) extended the research by formulating 
oscillators with position-dependent finite symmetric decreasing and increasing 
mass. Classical phase portraits of the systems were analyzed using analytical 
approaches. Takou et al. (2025b) introduced a thermodynamic analysis of a 
harmonic oscillator with position-dependent mass and explored also the sta-
tistical properties and thermodynamic quantities of the system. 

Mathews and Lakshmanan (1974) considered the so called ‘Mathews-Laksh
mann oscillator’ with PDM of Lorentzian profile type (Mathews & Laksh-
manan, 1975). This equation has the exact analytic solution in the form of the 
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cosine trigonometric function (Lakshmanan & Chandrasekar, 2013; Karthiga 
et al., 2017; Santos & González-Borrero, 2023).

Truly nonlinear like PDM oscillator

In general, let us assume the spring to have nonlinear elastic property. 
The potential energy for the spring is (Cveticanin, 2018)

	 	
(6)

where α ≥ 1 ^ α U R (integer or noninteger) is the nonlinearity order of the 
oscillator and ωα2 is a constant. Substituting ( ) into ( ) – ne znam šta treba da 
bude u zagradama (Lj.Tubić) the equation of motion is

	 	
(7)

Comparing (7) with the oscillator with constant mass

	 	
(8)

the difference is evident. The additional terms in (7) are the products of 
PDM function and its position derivative. As the equation (7) represents the 
perturbation of (8), i.e. of the truly nonlinear oscillator (Mickens, 2010), the 
equation (7) is usually called ‘truly nonlinear like PDM oscillator’.

Analyzing (7) it is obtained that it has the first integral

	 	
(9)

The first integral (9) is of energy type where both energies (kinetic and 
potential) are mass dependent. For initial conditions

	 x(0) = A,  x. (0) = 0	 (10)

where A = const. the constant is  and the energy integral is

	 	
(11)

i.e.

	 	
(12)
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Expression (11) i.e. (12) describes the orbital periodic motion with ampli-
tude A. Using (12) the period of vibration is

	 	
(13)

Unfortunately, the exact analytic solution of (13) is not evident. Because 
of that the method for calculation of the approximate period of vibration is 
introduced.

Modified He’s formulation

He, in his paper (He, 2006), introduced the formula for computing of the 
approximate frequency of vibration of the perturbed linear oscillator

	 	
(14)

where ω1 is the exact frequency of the nonperturbed linear oscillator, ω2 = ω  is 
unknown frequency, and R1(0) and R2(0) are residuals obtained for the linear 
solution Acos(ωt) and corresponding frequencies. 

For the truly nonlinear oscillator (8) and initial conditions (10) there is the 
exact solution x = Aca(α, 1, ωt) in the form of the ca cosine Ateb function 
(Cveticanin, 2025) with exact frequency

	 	
(15)

Substituting (15) into (14) and after some modification the approximate 
frequency of the ca Ateb function follows as

	 	
(16)

Knowing that the Ateb function is periodic with period  where 
B is the complete beta function, the period of vibration is

	 	
(17)

In (17) the first term corresponds to the period of the truly nonlinear oscil-
lator with constant mass, and the second is the correction term which depends 
on the PDM function and its position derivative. Analyzing the relation (17) it 
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is obvious that the period is longer for decreasing PDM than for the oscillator 
with constant mass. In opposite, if mass is increasing the period is decreasing 
in comparison to the oscillator with constant mass. The higher is the mass 
increase, the period is shorter. 

THEORETICAL FRAMEWORK AND APPLICATIONS OF PDM 
IN QUANTUM SYSTEMS

This section reviews the theoretical framework and practical implications 
of PDM models in quantum systems, particularly in the modeling of quantum 
oscillators. It highlights how the PDM formalism modifies standard quantum 
models, enabling more accurate descriptions of carrier behavior in heterostruc-
tures, quantum wells, and quantum wires. The theoretical foundations of PDM 
are examined, along with its significance in capturing the spatial variations of 
effective mass and its relevance in multiple application domains.

In engineered nanostructures such as heterostructures, quantum wells, 
and quantum wires, the spatial nonuniformity of material parameters neces-
sitates refined theoretical models to enable accurate simulation and device 
optimization (Capasso et al., 1995; Zawadzki, 2005). The PDM approach thus 
represents an essential tool for describing quantum mechanical systems where 
the effective mass of charge carriers varies spatially (Roos, 1983; Bastard, 
1988). Namely, recent advances in nanotechnology and semiconductor physics 
have increasingly emphasized the importance of spatially varying material 
parameters, especially the effective mass of charge carriers in semiconductor 
nanostructures. The PDM framework emerges as a crucial refinement to standard 
quantum models, accounting for the inhomogeneities encountered in real-world 
systems (Dekar et al., 1999; Plastino et al., 1999). 

Furthermore, the analogy between mechanical and quantum PDM oscil-
lators has been demonstrated (Carinena et al., 2007; Schulze-Halberg & Roy, 
2016). The use of PDM models is widespread in quantum dynamics studies of 
low-dimensional systems (Costa Filho et al., 2011; El-Nabulsi, 2021a), particu-
larly in the coherent state framework, where a specific quantum state closely 
approximates classical behavior. This is especially significant in the context 
of quantum dots, quantum wells, and other semiconductor nanostructures (Cruz 
& Ortiz, 2009; Costa et al., 2023).

PDM model and applications

In nanostructures such as quantum dots, quantum wells, and superlat-
tices, the effective mass of carriers (electrons and holes) is not constant but 
varies with position. The PDM model captures this spatial variation, providing 
improved accuracy in describing energy states and carrier dynamics. Coherent 
states in these structures often serve to describe the quasi-classical behavior 
of confined carriers (e.g., in laser-based nanostructures and quantum emitters).
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Key application areas include:
•	 Semiconductor quantum dots: Electrons are confined in all three spatial 

directions, with PDM models accurately describing energy levels and wave 
functions (Ghosh et al., 2016; El-Nabulsi, 2020a; 2020b; Sari et al., 2022).

•	 Quantum wells: Electrons can move freely in the plane of the well but are 
confined in one dimension, forming discrete, quantized energy levels 
(Harrison, 2005; Dekar et al., 1999).

•	 Superlattices and nanoscale layers: These structures exhibit engineered 
potential profiles relevant to nonlinear optics and coherent emission prop-
erties (Chen, 2008).
A heterostructure consists of multiple layers of dissimilar semiconductor 

materials, each with distinct electronic band structures (El-Nabulsi, 2021a; 
2021b; Costa et al., 2021). These structures are typically fabricated using epi-
taxial growth techniques such as molecular beam epitaxy (MBE) or metal-
organic chemical vapor deposition (MOCVD), allowing atomic-level control 
of layer thickness and composition (Chen, 2008).

Quantum wells arise when a thin semiconductor layer with a lower bandgap 
is confined between layers of higher bandgap material (Harrison, 2005). This 
structure creates a potential well that confines carriers in one spatial dimension, 
leading to discrete energy levels (Dekar et al., 1999). Quantum wires extend this 
confinement to two dimensions, allowing motion only along a single axis and 
are typically fabricated using electron-beam lithography and anisotropic etch-
ing (Chen, 2008). While idealized models assume a constant effective mass, 
real-world systems exhibit spatial variations due to changes in alloy composi-
tion, band structure, and quantum confinement effects (Roos, 1983; Bastard, 
1988; Zawadzki, 2005). Accurate modelling thus requires incorporating PDM 
effects to account for variations in energy spectra, carrier mobility, and tunneling 
rates (Serra & Lipparini, 1997; Koç & Koca, 2003).

Quantum Oscillators with Position-Dependent Mass

The PDM oscillator approach is essential for simulating devices where 
material inhomogeneity strongly affects carrier motion (Serra & Lipparini, 
1997; Mottaghizadeh & Sadeghi, 2020). These oscillators extend classical 
harmonic and inharmonic oscillator models by incorporating mass variation, 
leading to modified energy levels and wavefunction profiles (Dutra & Almeida, 
2000; Bagchi et al., 2005; Bagchi et al., 2012; Costa et al., 2023; Takou et al., 
2025b). These models are particularly relevant in:

•	 Quantum wells and dots with smooth interfaces (Harrison, 2005; Sayrac 
et al., 2025).

•	 Semiconductor devices with spatially graded composition or doping (Bas-
tard, 1988).

•	 Superlattices and nanostructures with engineered potential landscapes 
(Christiansen & Lima, 2023; Lima & Christiansen, 2023).
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For instance, high-electron-mobility transistors (HEMTs), utilized in high-
frequency RF and satellite circuits, involve heterostructures such as GaAs/
AlGaAs where PDM arises at interfaces between materials with different band-
gaps (Roos 1983; Capasso et al., 1995; Peter, 2020). In scanning tunneling 
microscopy (STM) systems, the tip interacts with layered quantum materials 
where electronic properties–and effective mass–vary spatially, influencing 
tunneling probability and imaging resolution (Chen, 2008; Jaradat et al., 2024a; 
2024b). Resonant tunneling diodes (RTDs) utilize double-barrier quantum 
wells, where varying effective mass influences tunneling rates and energy 
levels (Bagchi et al., 2005; Bagchi et al., 2012). Quantum cascade lasers (QCLs), 
employed in spectroscopy, gas sensing, and medical diagnostics, consist of 
repeated quantum wells with alternating materials, resulting in PDM across 
the layers (Capasso et al., 1995; Callebaut & Hu, 2005). Graded-index wave-
guides, quantum dot LEDs, and solar cells similarly exhibit PDM effects due 
to compositionally graded materials (Bastard, 1988; Mottaghizadeh & Sadeghi, 
2020; Ullah & Ullah, 2020; Sayrac et al., 2025).

The PDM effects also manifest in strongly inhomogeneous plasmas, where 
spatially varying electric and magnetic fields modulate effective mass, impact-
ing Langmuir wave propagation and particle trapping (Christiansen & Lima, 
2023; El-Nabulsi & Anukool, 2022). These systems often display nonuniform 
energy spacing, asymmetric tunneling, and position-sensitive resonance phe-
nomena, underscoring the importance of PDM oscillator models in understand-
ing such effects (Quesne, 2023).

CONCLUSION

This review has provided a thorough overview of position-dependent mass 
(PDM) models and their theoretical frameworks, highlighting their essential 
role in understanding natural and engineered oscillatory systems. From undu-
latory swimmers and flexible plant structures to insect flight mechanisms, 
PDM models accurately capture dynamic mass variations crucial to locomotion, 
fluid–structure interactions, and adaptive responses in biological systems.

In engineering and quantum domains, PDM models have proven vital for 
the design and optimization of advanced electronic, photonic, and nano-scale 
devices–including quantum cascade lasers, high-electron-mobility transistors, 
and scanning tunneling microscopy. Their ability to integrate mass variation 
and motion dynamics makes them indispensable in both fundamental and ap-
plied research.

The broad relevance of PDM models in biology, engineering, and quantum 
systems underscores their versatility in capturing the complex dynamical be-
havior of oscillators with position-dependent inertia. This unified framework holds 
promise for guiding the development of biomimetic devices, soft robotics, and 
adaptive materials inspired by natural strategies for movement and stability.
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Future research should aim to refine these models to incorporate nonlin-
ear effects, anisotropic material behavior, and complex damping mechanisms 
while validating their predictions experimentally in both natural and engi-
neered systems. Integrating PDM-based models into next-generation quantum 
devices, photonic systems, and plasma-based technologies offers substantial 
opportunities for innovation and performance enhancement. Ultimately, PDM-
inspired oscillators bridge the gap between natural insights and engineering 
solutions, paving the way for transformative applications across diverse scien-
tific and technological fields.

OUTLOOK AND FUTURE WORK

The advancement of accurate PDM models for living systems demands 
interdisciplinary collaboration among biomechanics, physiology, fluid dynamics, 
and computational modeling. Future research should prioritize the refinement 
of mathematical formulations for PDM systems–particularly in the context of 
complex biological tissues and fluid–structure interactions–supported by high-
fidelity experimental data from time-resolved MRI, high-speed imaging, and 
other advanced techniques.

Furthermore, leveraging machine learning and optimization algorithms 
will be instrumental in identifying key parameters that govern PDM system 
behavior, facilitating more robust and precise control strategies in real-world 
applications. Integrating these data-driven approaches with theoretical models 
promises to accelerate the development of predictive and adaptive PDM frame-
works.

Looking ahead, the combination of theory, experimentation, and compu-
tational simulation will be crucial to unlocking new insights into these complex 
yet elegant natural phenomena. Such efforts will not only enhance our under-
standing of biological and quantum systems but also inspire the next generation 
of bioinspired, energy-efficient, and adaptable engineered devices that fully 
exploit the rich dynamical properties of PDM-based oscillators.
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РЕЗИМЕ: Преглед истражује концепт осцилатора са масом зависном од 
положаја (МЗП) препознат код природних система а који је применљив код квант-
них уређаја. Биолошки осцилаторни системи показују динамичко прилагођавање 
расподеле масе кретању и положају. Промена ефективне масе и момента инерције 
дешава се код савијања стабљике биљке, код вијугања тела рибе при пливању, 
код крила при летењу птица али и инсеката, код удова човека и животиња при 
корачању и трчању. Рад низа унутрашњих органа у телу човека омогућен је и 
пропраћен осцилаторним кретањем уз промену масе (рад срчаног мишића, трепе
рење гласне жице). Инспирисани овим природним феноменима сачињени су модели 
осцилатора са ефективном масом која је променљива, и функција положаја. Физич
ки модел осцилатора који симулира кретања састоји се од еластичног елемента 
за који је везано тело променљиве масе. У општем случају математички модел 
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система је Лиенардова једначина са квадратном функцијом брзине. У раду су при
казане специфичности овог осцилатора које се односе на тип кретања, период и 
амплитуде осциловања. Ови модели нуде свестран теоријски оквир за разумевање 
осцилатора са просторно променљивом инерцијом, обухватајући сложене интер
акције између структуре и кретања. У раду је, користећи карактеристике меха
ничког модела, повучена паралела између природних система и инжењерских 
квантних уређаја. Преглед обухвата теоријски развој МЗП модела, њихове меха-
ничко-квантне аналогије и њене примене. У квантним системима, нарочито у 
полупроводничким наноструктурама као што су квантне јаме, жице и тачке, 
просторне варијације ефективне масе носилаца наелектрисања проистичу из 
композиционих нехомогености и структурних градијената. МЗП модели омо
гућују усавршавање традиционалног приступа квантне механике, побољшавајући 
тачност предвиђања нивоа енергије и динамике носилаца у овим системима. 
Такође, ови модели чине основу за пројектовање и рад напредних електронских 
и фотонских уређаја попут квантних каскадних ласера, транзистора са великом 
покретљивошћу електрона и скенирајуће тунелске микроскопије. Повезујући 
природне и инжењерске перспективе, овај рад указује на велики потенцијал МЗП 
осцилатора као оквира за вођење иновација у биолошки инспирисаним технологи
јама, адаптивним материјалима и квантним уређајима следеће генерације. Будућа 
истраживања треба да укључе нелинеарне ефекте, анизотропне материјале и 
стратегије оптимизације засноване на подацима, како би се додатно усавршили 
МЗП модели и искористио њихов пуни технолошки потенцијал.

КЉУЧНЕ РЕЧИ: маса зависна од положаја (МЗП); модели инспирисани при
родом; нелинеарни осцилатори; квантни системи




